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Development of an Autonomous Indoor Phenotyping Robot

Abstract
In order to fully understand the interaction between phenotype and genotype x environment to improve crop
performance, a large amount of phenotypic data is needed. Studying plants of a given strain under multiple
environments can greatly help to reveal their interactions. To collect the labor-intensive data required to
perform experiments in this area, an indoor rover has been developed, which can accurately and
autonomously move between and inside growth chambers. The system uses mecanum wheels, magnetic tape
guidance, a Universal Robots UR 10 robot manipulator, and a Microsoft Kinect v2 3D sensor to position
various sensors in this constrained environment. Integration of the motor controllers, robot arm, and a
Microsoft Kinect (v2) 3D sensor was achieved in a customized C++ program. Detecting and segmenting
plants in a multi-plant environment is a challenging task, which can be aided by integration of depth data into
these algorithms. Image-processing functions were implemented to filter the depth image to minimize noise
and remove undesired surfaces, reducing the memory requirement and allowing the plant to be reconstructed
at a higher resolution in real-time. Three-dimensional meshes representing plants inside the chamber were
reconstructed using the Kinect SDK’s KinectFusion. After transforming user-selected points in camera
coordinates to robot-arm coordinates, the robot arm is used in conjunction with the rover to probe desired
leaves, simulating the future use of sensors such as a fluorimeter and Raman spectrometer. This paper shows
the system architecture and some preliminary results of the system, as tested using a life-sized growth chamber
mock-up. A comparison of using raw camera coordinates data and using KinectFusion data is presented. The
results suggest that the KinectFusion pose estimation is fairly accurate, only decreasing accuracy by a few
millimeters at distances of roughly 0.8 meter.
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ABSTRACT. In order to fully understand the interaction between phenotype and genotype x environment to improve crop 
performance, a large amount of phenotypic data is needed. Studying plants of a given strain under multiple environments 
can greatly help to reveal their interactions. To collect the labor-intensive data required to perform experiments in this 
area, an indoor rover has been developed, which can accurately and autonomously move between and inside growth 
chambers. The system uses mecanum wheels, magnetic tape guidance, a Universal Robots UR 10 robot manipulator, and a 
Microsoft Kinect v2 3D sensor to position various sensors in this constrained environment. Integration of the motor 
controllers, robot arm, and a Microsoft Kinect (v2) 3D sensor was achieved in a customized C++ program. Detecting and 
segmenting plants in a multi-plant environment is a challenging task, which can be aided by integration of depth data into 
these algorithms. Image-processing functions were implemented to filter the depth image to minimize noise and remove 
undesired surfaces, reducing the memory requirement and allowing the plant to be reconstructed at a higher resolution in 
real-time. Three-dimensional meshes representing plants inside the chamber were reconstructed using the Kinect SDK’s 
KinectFusion. After transforming user-selected points in camera coordinates to robot-arm coordinates, the robot arm is 
used in conjunction with the rover to probe desired leaves, simulating the future use of sensors such as a fluorimeter and 
Raman spectrometer. This paper shows the system architecture and some preliminary results of the system, as tested using 
a life-sized growth chamber mock-up. A comparison of using raw camera coordinates data and using KinectFusion data is 
presented. The results suggest that the KinectFusion pose estimation is fairly accurate, only decreasing accuracy by a few 
millimeters at distances of roughly 0.8 meter. 
Keywords. growth chambers, mechatronics, robotics, software development 
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Introduction 
In a world of changing climate and increasing world population, there is a great need to understand the interaction 

between genotype and phenotype in order to produce enough crop yield. Organizations such as the Royal Society of 
London (2009) and the FAO  (Rai, et al., 2011) suggest a need for at least a 50% increase in food supply in the next half-
century. This will not be achieved without a drastic change in the way we grow our food. Sustainable intensification, 
involving increasing the productivity of existing farmland while reducing negative environmental impacts, is promoted as 
one of the best ways – and some would say the only way - to achieve this. 

One of the main methods to increase crop yield without increasing chemical use involves plant breeding techniques. 
Effective plant breeding requires in-depth data on plants’ health and growth patterns, which are part of their broader 
phenotype, or physical characteristics. Many traits relating to growth, performance, and yield are complex traits under 
polygenic control (Pieruschka & Poorter, 2012). Studying these traits using plants’ phenotypes to understand how each 
strain behaves under various growing conditions is an important step toward improving the characteristics of a crop stock. 
This paper presents a technical solution to several issues relating to current phenotyping techniques. 

Due to the large amount of manual labor required in traditional by-hand phenotyping methods, numerous studies and 
experiments have been exploring phenotyping methods that are based on images, often either RGB (red, green, and blue 
channels) or RGB-D (red, green, blue, and depth channels). For instance, one phenotyping technique uses infrared and 
depth images acquired with a CamCube ToF camera (Alenya, Dellen, Foix, & Torras, 2013). The method involves taking a 
general view of the plant, segmenting to find leaves which are suitable for probing, and then moving the cameras closer to 
the suitable leaf using a Barret WAM arm. This leaf is then probed with a sample cutting tool. This points to the possibility 
for an application of a wide variety of sensors. For instance, fluorescence imaging sensors could be placed on the end of 
the robot arm for investigating the fluorochrome chlorophyll, which is involved in crop yield (Chaerle & Van Der Straeten, 
2001). Numerous other sensors, such as near-infrared spectroscopy, can be applied to extract phenotypic data (Montes, 
Melchinger, & Reif, 2007).  

Other image-based phenotyping techniques use infrared stereo image sequences to extract depth and then segment the 
resulting data to extract parameters such as leaf area and number of leaves (Aksoy, et al., 2015). Tobacco plants can be 
stereo-imaged periodically, using a KUKA robot arm. The image pairs are then run through an OpenCV block-matching 
algorithm to extract depth information. Next, the images are segmented to distinguish each leaf. Leaf area is found by 
ellipse-fitting each leaf, and the number of leaves is compared to the ground truth obtained via human measurement. Since 
these methods used fixed plant imaging positions, the methods are mainly suitable for stationary plants and a stationary 
robot arm, limiting the experiment to one growth environment. In a growing area larger than the reach of the robot arm, 
this approach also requires conveyance of the plants out of their growth environment, introducing other stress factors 
outside of the designed environment. Azzari et al. (2013) fused several point clouds, sometimes as many as 2000 point 
clouds per plant, to reconstruct the plant for extraction several pieces of information, including volume and allometric 
relationships. Point clouds were attained through manually moving their first-generation Kinect (v1). Chaivivatrakul et al. 
(2014) fused several point clouds into one 3d reconstruction and then extracted traits of corn plants such as leaf area, leaf 
length, and stem diameter. This method didn’t consider the case where multiple plants are in view. Finally, phenotyping 
can also be done in the field (Klodt, 2015). By taking a pair of images of the same grapevine plant, on several different 
days, some phenotyping can be done automatically. Once image pairs are acquired, they can be rectified to extract depth 
information, and finally segmented to find leaf and stem areas. This method did not provide an automated image capturing 
technique, and did not provide a framework for integration with other sensors for monitoring plant growth. 

The solution presented in this paper required a minimal amount of labor during run-time, and can be extended, by 
adapting established phenotyping and plant-breeding to the techniques, to track plants that are growing in multiple growth 
environments concurrently. This solution involved an autonomous rover equipped with a Universal Robots UR 10 (UR10) 
robot arm, an industrial computer, a Microsoft Kinect (v2) sensor, and a rover base. The system was self-powered and 
required no wires to the outside world. The rover was equipped with a 120V power supply capable of powering numerous 
auxiliary sensors. This system allows for attachment of plant monitoring equipment, as illustrated in two small proof-of-
concept experiments. In the first, the rover autonomously moved to the region representing the desired growth chamber in 
a setup mimicking Iowa State University’s future Enviratron plant growth facility. This facility will contain several growth 
chambers with a robot vestibule in front of each chamber door. Once at the destination, the system probed several plants in 
the chamber with a rigidly-mounted steel rod that simulates other sensors that need to be placed at a certain distance and 
with a specific orientation to plant leaves. In the second experiment, the robot probed leaves on one plant using three 
related but different data sources, to compare the accuracy of each source. 
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THE PHYSICAL SYSTEM 

Background on Hardware and Design 

The Enviratron Rover aims to be a tool which can be used to autonomously gather feedback on plants which are 
simultaneously growing in multiple environments, from sensors as varied as traditional cameras, Raman spectrometers, 
thermal imagers, and fluorescence monitoring systems. The final application consists of eight growth chambers, arranged 
in a grid pattern (Figure 1). To reach these goals, the rover needs to be mobile, accurate at positioning sensors, and able to 
navigate the environment it is placed in (roughly 120 cm in the direction perpendicular to travel), all with extremely high 
reliability and repeatability. Additionally, making the rover autonomous has the potential to allow for data to be collected 
at precise intervals of time, with significantly lowered per-data labor requirements for the researchers involved. It is 
desired that the system can run without human input for a whole day, or 8 hours. 

 
Figure 1. The Chamber Arrangement. 

The scope of this paper is to present the system in an intermediate stage where automation is achieved for each 
individual task. Our setup is equivalent to assuming the growth chamber vestibule is opened, and the material separating 
the vestibule from the growth area is already removed. Human input was only required to select, using a PC, a point on the 
plant to image, and the human told the rover when to shift sideways to view another plant. The procedures required to get 
Raman spectrometer readings share very similar sub-tasks, such as locating the plant and calculation of the surface 
normal. 

Several commercial systems could be repurposed and programmed for this task. However, each have significant 
drawbacks. For instance, the Segway 440 Flex Omni has omnidirectional control, can interface with external hardware, 
and is specified to carry payloads as high as 450 kg. However, it has minimal support for large external electronics such as 
the UR10 and the base system is quite costly. Another system, the Neobotix MMO-550, is omnidirectional and has support 
for the UR10, sensors and sensors such as SICK NAV350, and can be controlled using the open-sourced Robotic 
Operating System (ROS). However, its uptime is quoted at 3 hours, there is limited additional space for sensors and 
electronics, and is also quite costly. Finally, the Ridgeback, sold by Clearpath Robotics, fits the design requirements but is 
quite costly and is large for our application. 

It should be noted that, to the best of our knowledge, no use of a rover for autonomous imaging of plants in multiple 
environments has been reported in the literature. These previously-mentioned commercial systems are only collections of 
multi-purpose hardware which we merely claim could be repurposed, i.e. modified and put to use, for the current novel 
task. 

System Hardware 

The rover proposed in this paper (Figure 2) combines many features which are desirable in research applications 
similar to this, and only a brief overview of these features will be explained in this section. 
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Figure 2. The Enviratron Rover. 

The main frame of the rover uses the T-slotted aluminum building system sold by 8020 Inc. (Columbia City, Indiana, 
USA). This makes the overall system architecture extremely modular and adaptive, and also provides natural ease of 
maintenance. The system was modeled entirely in SolidWorks prior to build. There was one Roboteq FBL2360 motor 
controller for each side (Left and Right) each controlling two Midwest Motion Products MMP BL58-412F-48V GRA60-
032 brushless DC motors. Each motor drove one 6” Mecanum Wheel HD, purchased through AndyMark. Four dust and 
water-resistant Roboteq MG1600 magnetic tape sensors were used for guidance and simple localization. A Spektrum DX6i 
Transmitter was used for remote control during development. One lighted hard-wired emergency stop was placed on each 
side for safety. A Meanwell TS1000 DC/AC inverter powered external 120 V outlets as well as the three core components 
of the imaging and probing system: a Logic Supply ML400G-30 industrial computer, Microsoft Kinect for Windows V2, 
and Universal Robots UR 10 robot arm. Finally, the whole system is powered by a 100Ah battery from AA Portable Power 
Corp (also known as batteryspace.com). This battery was chosen for its high energy storage capacity and appropriate 
balance of features, safety, and pricing. The overall system, excluding the UR10 arm to allow comparison with previously-
mentioned commercial systems, had roughly half the cost of the least-expensive commercial system. 

The Mecanum wheels used are similar to those analyzed by Gfrerrer (2008). In the ideal Mecanum wheel, force 
between the wheel and the ground only occurs along a vector parallel to the axis of the single roller which is in contact 
with the ground at that instant. Each roller’s axis is rotated 45 degrees from the motor’s axis. The wheels make contact 
with the ground in a shape described as an “O”, a configuration often termed “O from below” in the robotics community. 
If the wheels are installed such that this does not occur, the stability was found to be poor, especially for lateral motion. 

SOFTWARE 

Overview 

Our task mainly involves: localization of the rover, control of the motion of the rover, building knowledge of the 
growth chamber’s contents, and positioning the sensor. The way we integrated our hardware allowed 
compartmentalization of these tasks, all of which can be controlled by the “brain”, which is the PC (Figure 3). 

 
Figure 3. Software Hierarchy. Line denotes a communication line, and arrows show direction packets are sent. 
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Various communication protocols and technologies were leveraged. Three tape-sensor data streams were sent to the 
motor controllers using Pulse Width Modulation (PWM), and one magnetic sensor used Roboteq’s proprietary RoboMag 
protocol, allowing marker information to be transmitted easily. Motor position was implicitly sent to the motor controller 
via the built-in Hall-effect sensor. Roboteq’s proprietary implementation of a PID closed-loop speed controller was 
leveraged by our custom scripts to control each motor during each scan cycle. The two motor controllers communicated 
using Roboteq’s proprietary implementation of the Controller Area Network (CAN) protocol. Our custom PC code was all 
written in C++. The PC modifies and reads the motor controllers’ internal variables using serial (RS232) communication. 
The PC gets current pose (position and orientation) information and sends desired poses to the UR10 via TCP/IP 
(Ethernet) communication. Kinect information is read using a USB 3.0 connection. 

A Brief Note on Control Strategy 

Although mathematical proof of stability for dynamic systems is quite common in the controls literature, that is not the 
focus of the present work. System modelling has been omitted for the time being and will likely be presented in a later 
report. Rather, this paper aims to present a working, intuitive, and adaptable framework for mobile manipulator 
implementation. The ideas presented could be applied to much wider classes of robots. Although it is dynamically-loaded, 
the system presented requires the controller to know relatively little about its system in order to function. 

All inputs and real-time commands are fed into the leading motor controller which then commands the other “follower” 
motor controller. The motor controller’s internal scripting has a large number of internal functions, but can only process 
Booleans and integers and has no ability to add libraries. This is generally not a limitation if clever coding practices are 
used. To provide the system with knowledge of its location, we have implemented a concept equivalent to tracking the 
rising edge of strategically-placed markers (any “upside-down” magnetic tape is interpreted as a marker by the 
MG1600’s). A marker on one side of the track makes the controller “look” for rising edges on the other side of the track. 
The number of rising edges found during one “look” interval is stored as the last known location in the motor controller. 
To determine when the rover should turn off of the main track, we checked whether we counted an even or odd number of 
markers and compared with the current desired chamber. An example of this logic, for an odd chamber number, is 
presented in Figure 4. In addition to information on the most recent marker count, representing the current magnetic-tape 
branch, the system can recognize the four-way intersection inside each individual chamber that corresponds to the leftmost 
plant. This provides requisite low-level localization. Further localization within the chamber will result from feedback 
from the Kinect sensor. 

 
MarkerCopy = Marker 
While MarkerCopy > 2 
 MarkerCopy = MarkerCopy – 2 
If MarkerCopy = 1 & Marker = DesiredChamber 
 Follow Left Track 

Figure 4. Psuedocode for Track Choice. 

 
The rover has two modes for guidance: one-sensor proportional control and two-sensor proportional control. The 

strategy can be boiled down to the following formulas. 
 
1-sensor control: 

VDOT = VDEF * F  (1) 

  (2) 

VSTE = K1 * T1  (3) 
 
2-sensor control: 

VDOT = VDEF * F  (4) 

  (5) 

VSTE = K2 * (T1 + T2)  (6) 
VPERP = K2 * (-T1 + T2)  (7) 

Where VDEF is the default velocity, VDOT, VSTE, VPERP terms denote velocity in the direction of travel (DOT), steering, 
and perpendicular to the DOT, respectively. F is a scaling factor, K1 and K2 are proportional gains, T1 is the reading from 
the tape sensor on the leading edge of the robot (i.e. the DOT), and T2 is for the trailing edge. This is makes the robot 
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correct the difference in the Tape readings by moving perpendicular to DOT; if the robot is moved forward both sensors 
will read opposite signs and strengthen the feedback. Similarly, an improperly-oriented robot, i.e. one that is not “pointing 
along the track”, will have both sensors have the same sign and the steer command will be strengthened. The three 
velocity terms are summed appropriately for each wheel (c.f. AndyMark), and the results are sent to the individual motors. 

Pre-Processing of Kinect Depth Data 

The imaging and probing system has to be inherently robust to varying leaf size, stalk height, and plant type. Two 
approaches have been considered: 1) the trivial case of hard-coding robot-arm positions to several generally-desired poses, 
such as “front view” and “top view”. 2) The general case of calculating desired pose based on knowledge of the sensor 
being used and the current arrangement of plants. For this study, we focused on the second, more general case. 

Researchers have proposed using many 3D reconstruction methods on plants including structured light (Nguyen, et al., 
2015), time of flight (ToF) (Alenyá, 2013), and stereo reconstruction (Biskup, 2007). The Kinect V2 sensor was chosen for 
this study due to its affordable price, useful features and specifications (c.f., Butkiewicz 2014), and well-documented 
application program interface (API). An additional advantage of the Kinect V2 is that its Software Development Kit 
(SDK) provides reasonably accurate reconstruction sample code, termed KinectFusion, that integrates easily into custom 
applications (Izadi et al., 2011, and Microsoft, 2016). 

Feeding an unfiltered depth image to the KinectFusion algorithm was found to lead to a gradual erosion of the leaves, 
stalk, and stems of the plant, resulting in unusable meshes. However, this off-the-shelf algorithm was found to be very 
effective if an appropriately-filtered depth image was instead passed to the algorithm. The number of voxels that are 
tracked are limited, and unstable voxels are filtered out, to allow the algorithm to run in real time. In our application the 
table and walls surrounding the plant are far more stable than the pixels corresponding to the thin-stemmed, thin-leaved 
plants. 

We wanted an algorithm that was computationally efficient enough to allow quick reconstructions, and knew the Kinect 
V2 API has an accurate mapping between the color camera and the depth camera. However, not every depth pixel has a 
corresponding color pixel due to physical properties of the sensors. We set depth pixels without an RGB counterpart to 
zero. Incoming images from the Kinect were put into a data structure that is effectively an RGB image. This representation 
is known to be sensitive to lighting changes, and there are methods for dealing with this issue. Luckily, however, the 
Kinect V2 had quite effective auto-brightness capabilities so lighting changes weren’t a significant issue. The challenge 
was finding an appropriate color space that allowed for easy identification of plant matter. Yang and Waibel, for instance, 
found that human faces were clustered in what they term chromatic color space (Yang 1997). We are mainly interested in 
plants, which are generally diffuse green and brown objects, so we chose to convert our RGB input image into HSV. After 
conversion to HSV, an experimentally-determined threshold was applied to each depth pixel. Let Dij (Tij) represent the 
pixel in row i row and column j of the R x C depth image (thresholded depth image), corresponding to a region of the 
HSV image as determined by the Kinect API’s mapping. We have, for , 

  (10) 

The value of 140 conservatively thresholds out many extremely bright pixels, such as the walls of the growth chamber. 
Next, a 2x2 rectangular structuring element was used to morphologically dilate the image (Jain, 1995), conservatively 
removing many noisy elements. This resulting thresholded and dilated depth image, which contains the plant pixels plus 
some other pixels, is passed to the KinectFusion algorithm Most settings were found to have minimal effect on the results. 
We left every setting default except increased the amount of voxels tracked per meter from 256 to 512. An example fusion 
image is shown in Figure 5. 

 
Figure 5. A sample of fused image 

Describing Kinect Data in Robot-Base Coordinates 

Before being able to use the Kinect’s 3D information to accurately position a robot arm, the Kinect data must be 
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described in robot base coordinates (see Figure 6). This was achieved by first describing in end-effector coordinates and 
then describing that data in robot base coordinates, via coordinate transforms. To convert user-selected point PC [m], from 
camera coordinates into base coordinates PB [m] we used 
PB = HEB * HCE * PC  (11) 

Where HEB and HCE denote transformation matrices between end-effector and base, and camera and end-effector, 
respectively. 

  
Figure 6 Main UR Coordinates. 1: robot base (subscript B), 2: end-effector (E), 3: camera coordinates (C). 

The mapping between the camera’s coordinate system and the robot arm’s end-effector’s coordinate system must be 
determined. An overview of camera “hand-eye” calibration can be found in the seminal Tsai and Lenz paper (1989). This 
mapping can be completely defined by a rotation followed by a translation, which can be represented by a homogeneous 
transformation: 

PE = HCE * PC    (12)     
Where PE denotes a point in robot end-effector coordinates [m]. 
Using the Kinect SDK presented a few details that needed to be worked out. For instance, for a given point in the 

space, different functions return coordinates in different reference frames. After careful reading of the SDK’s various 
projects’ source code and experimentation with the sensor yielded a thorough understanding of the setup. Transforming 
from a given frame to the robot base follows the same process of applying successive transformation matrices to 
coordinates until the point is described in robot coordinates. Since all three coordinate systems used by Kinect shared the 
same origin, converting form these coordinates to the camera coordinates was trivial. 

The main transformation matrix was from camera coordinates to the robot end-effector. First, a rough “theoretical” 
estimate of HCE was obtained using calipers, for validating the final calibration. 

This calibration matrix was found using Christian Wengert’s add-on (Wengert) to the Camera Calibration Toolbox 
(Bouguet, 2015) for MATLAB. The rotation was found to be small (off-diagonal entries |hij | < 0.03). Since the camera gets 
bumped occasionally and will therefore change orientation by small amounts that will likely negate these rotation entries, 
we mostly care about translation. The HCE for our setup was approximately 

  (9) 

The final calibration procedure involved techniques found in Wengert’s online documentation, with a few 
modifications. The Kinect V2 produced washed-up images of the calibration pattern when the camera was within roughly 
0.5 m. In our setup, a single layer of standard white paper was taped over the Kinect IR emitters, with a piece of tape 
securing edge closest to the receiver firmly against the Kinect front face. This decreased the IR emission in a clean enough 
fashion to collect images that weren’t over-saturated. The calibration pattern was scaled up such that the spacing between 
two adjacent circles’ centers was 16mm. Finally, the Kinect was flipping images left to right internally; we un-did that flip 
prior to calibration. The system was successfully calibrated using between 30 and 40 images; several calibrations were 



ASABE Annual International Meeting Page 8 

performed to perfect the process. Doing rapid calibration enables the end system to be modified to accommodate 
additional sensors without delaying the rest of the experiments’ schedule significantly. 

After the points are described in end-effector coordinates, we desire to describe them in robot base coordinates. Given a 

pose of the robot, defined by position  and rotation vector  in the robot base coordinates, we 
desire the transformation matrix from the end effector to the base. This is given by 

  (11) 

Where . And the rotation matrix R is defined as 

 (12) 
Where c = cos(θ), s = sin(θ) and v = 1-cos(θ). See Craig (2009) for discussion. 
In the experiment presented in this paper, described later, all coordinates were transformed to “camera” coordinates 

immediately after their variable’s initialization. The pose used for HEB depended on where the data was obtained from, as 
explained later. 

Obtaining Position and Normal 

To aid in planning for the next phase of the project, three different methods of probing were implemented. All three 
used the same Kinect camera and the same probing algorithm. However, the source of the normal and position information 
was different. 

The Kinect for Windows SDK (K4W) has functions for mapping between the color frame (RGB) to the camera space 
(“K2”). Using OpenCV, K4W, and custom methods (functions), the first method involved using the Kinect’s internally-
estimated, real-time position and normal of the internal KinectFusion mesh point corresponding to an RGB point clicked 
on our OpenCV window. The pose of the robot at the initialization of that instance of KinectFusion was used to calculate 
HEB, since data is returned after being transformed to initial-pose “camera coordinates” using Kinect’s estimate of the 
current pose relative to the initial pose. Part of our future work includes redoing the experiment with an exact 
transformation matrix, as obtained using matrix algebra on the HEB matrices based on the UR10’s pose feedback. 

The second method used three points in the Kinect’s real-time depth space corresponding to RGB points. The point 
clicked on our OpenCV window gave us the desired position. The surface normal was obtained using the K4W 
CameraSpace coordinates associated with the clicked pixel (p1), a pixel five pixels to the right (p2); since the RGB images 
are flipped this is equivalent to -x in camera coordinates), and a pixel five pixels below (p3) in the RGB image. The pose 
used to calculate HEB was the pose of the robot at the instant the probing button was clicked. This data is real-time, and 
not dependent on the estimated relative pose. The surface normal was the cross product of the vector from p1 to p2 and the 
vector from p1 to p3. Quantitatively: V1 = p2 - p1, V2 = p3 - p1, and N = V1 × V2. V1 and V2 are vectors. 

The third method involved manually opening the mesh generated by KinectFusion with the software Meshlab and 
saving the coordinates of three points (minimum necessary to understand the leaf’s normal and position), to .txt files. 
Logic used to find the normal in this third method was the same as in the “second method” above. This data uses the same 
HEB as method 1. 

For methods 1 and 2, the user simply clicked the desired point and clicked probe. In method 3, there was roughly a 
minute of required interaction between the user and the PC, per probe. In future more-autonomous systems, we propose 
using traditional RGB image processing methods to detect the desired leaf location, rather than having the user interact 
with the system. Again, the goal is to develop this robotic system until it is fully autonomous for an entire day. 

Calculating Desired Robot Pose 

Next, we calculated the desired end-effector coordinate system axes AX, AY, AZ. Two logical constraints were added to 
our system. Az should align with the surface normal N and the Kinect should be level with the ground. Since our probe 
end-effector is orthogonal to our end-effector’s XY plane, i.e., it extends in the Az direction, we solved the following 
equations for AX, Ay and AZ: 
Az = -N, Ax ∙ N = 0, Axz = 0, and Ay = Az × Ax               (13 a,b,c,d) 

This can be solved by two directions of Ax. To disambiguate, two checks were implemented. First, if AY is pointing up 
and the normal is not pointing high, rotate 180 degrees so AY is downward. Else, if AX points left, rotate 180 degrees so 
the Kinect doesn’t hit the plant. 

The position the end-effector moved to, p1, is a translation from the actual leaf position. Our probe stick was offset 
from the tool center point in the direction of the tool’s x-axis, and was orthogonal to the tool’s XY plane. Thus, the end-
effector position, in robot base coordinates, was defined by: 
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  (14) 
Where L is the length of the probe stick and r = radius from the tool center point to the thin probe. Next, we determined 

the rotation vector to send to the arm by solving equation 12 for rx, ry, and rz. Finally, the calculated coordinate values 
were sent to the UR10 to probe the leaf. 

EXPERIMENTS 
This section presents two experiments. The first uses the rover to position the UR10 appropriately, and uses method 3 

(“Text file” method) to probe two plants. The second experiment uses a stationary rover to position the UR10 
appropriately, and uses all three described probing methods to probe one plant. For all probing’s, the goal location was the 
bottom-left corner, from the perspective of the crouched robot, of a small piece of painters’ tape, roughly 5mm square. For 
easy identification, one leaf had two additional pieces placed away from the goal location, and one leaf had one additional 
piece. 

Mobile Rover 

This section presents an experiment demonstrating current effectiveness of the proposed system. The UR 10 arm was 
commanded to probe two plants (one artificial Silk Dracaena plant - VCK8023, from artificialplantsandtrees.com - and 
one real Ficus plant), on three separate leaves, five times each (i.e. 30 separate probing’s). Both plants were placed on a 73 
cm-high table (roughly the height that the UR base is at), around 1m apart. During normal conditions, the UR arm would 
extend roughly 80 centimeters in its Y direction for its end-effector to hit a desired leaf.  

Before each trial, the rover was set up at the edge of a track with complete magnetic tape as would be in a setup with 
one chamber. The rover entered the “chamber” and stopped at the intersection. A user clicked a button on the PC’s custom 
user interface (UI), commanding the rover to shift sideways. There was only one issue with the tape-following navigation. 
After trial 3, one sensor reported magnetic tape in an un-taped portion of concrete. The sensors were calibrated with the 
Roboteq utility and the experiment proceeded as planned. As the lab currently lacks access to a 2D robot-tracking setup, 
the precision of this tape-following is omitted for this report. 

Once the desired plant was in view, the user initiated our filtered Kinect Fusion algorithm. The UR10 moved to view 
the desired leaves, and the mesh was saved. Three points near the bottom-left corner of the tape markers were located in 
the MeshLab software, and stored in .txt file. The user clicked on our UI to probe the plant, the coordinates were sent 
through our “mesh probe algorithm”, and the UR 10 approached the leaf with the probe. Using the UR 10’s touchscreen 
user interface, we found ground truth by translating the end-effector until the probe hit the bottom-left corner of the tape 
markers. A summary of results is presented below. 

Table 1. Euclidian Distance Errors [mm]. “Avg.” means “average”. 

  
Trial         

 Plant Leaf 1 2 3 4 5 Avg. 

1 1 29.7 27.7 27.4 27.9 26.6 27.9 

1 2 22.9 23.5 22.0 24.5 26.9 24.0 

1 3 20.7 33.9 20.9 25.7 30.3 26.3 

2 1 18.6 16.9 8.5 24.0 19.6 17.5 

2 2 27.4 34.3 29.5 30.3 32.6 30.8 

2 3 34.7 33.0 27.1 35.1 31.9 32.4 

      
Avg. 26.5 

Stationary rover 

For the second experiment, the rover was kept stationary near the artificial Silk Dracaena, the UR10 was placed in a 
low “crouching” pose, and the program was initialized. The UR arm slowly (0.07 m/s) moved in an arc up to a higher 
pose, looking at the plant. The mesh was saved and integration was paused to ensure as much similarity between method 2 
and 3. Method 2 was used, the ending coordinates recorded, and the ground truth was found as before. The UR resumed its 
high pose, and if tracking was still successful, Method 2 was used to probe another leaf. Again, the UR resumed its high 
pose, and if tracking was still successful, Method 2 was used to probe another leaf. Tracking was occasionally lost while 
moving close to the plant, likely due to the proximity to the plant, which would result in an entire depth image of points 
below the Kinect’s minimum threshold. When tracking wasn’t successful on the second or third leaf, the Fusion was 
started at the bottom again before the next probing. However, a new mesh was not saved. Once all three leaves and their 
ground truth were found for method 2, method 1 and 3 were used to probe the same three leaves. So, each trial had 9 



ASABE Annual International Meeting Page 10 

probing’s and 9 corresponding ground truths. Since orientation wasn’t exactly the same for each probing, the probe would 
contact the tape at a different end-effector position. Five trials were conducted, resulting in 15 samples for each method. A 
standard comparison of means (student’s t and LSD) test was performed in JMP Pro 12. Key results are presented below. 
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Figure 7. Error (Euclidian Distance) [mm] for Experiment 2 

Table 2 Means 
Level Number Mean Std Dev Std Err 

Mean 
Lower 95% Upper 95% 

D 15 24.8626 7.3296 1.8925 20.804 28.922 
M 15 30.2206 10.7153 2.7667 24.287 36.155 
P 15 32.7744 9.7993 2.5302 27.348 38.201 

Table 3. Comparison of Means 
Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

P D 7.911710 3.429062 0.99158 14.83184 0.0260* 
M D 5.357948 3.429062  -1.56218 12.27807 0.1257 
P M 2.553762 3.429062  -4.36636 9.47389 0.4606 
 
As seen in table 2 and 3, the method 2 (depth) only had a statistically significantly different (p<0.05) mean than method 

1 (real-time point cloud). This can be interpreted as saying that method 2 had significantly lower mean error than method 
1. However, when the Lower CL is 1, suggesting that it is possible that the methods, although having statistically different 
means, could have practically similar means. This is in line with what was qualitatively observed; method 2 appeared to 
be the best method, but not by a lot. This suggests that the default Kinect Fusion pose estimation is pretty accurate. The 
other two comparisons of means failed to show statistically significant different mean error. More data could be collected 
in the future to increase confidence in the true means. However, this will likely be unnecessary because in practical terms, 
they all are good enough for “rough” probing, and none of them were accurate enough to be used, un-corrected, with a 
traditional fluorimeter or Raman spectrometer sensor. Regardless of the plant leaf location data source, we will still need 
to improve the probing accuracy for the system to meet our autonomous data-collection objective. 

Future work includes reducing these probing errors. The system may be highly sensitive to camera calibration, 
requiring a calibration after even a slight change in camera orientation relative to the end-effector. In this case, we suggest 
firmly mounting the Kinect sensor with zip ties, screws in the Kinect housing, or trapping the Kinect in a U-shaped 
aluminum bracket, for instance. Otherwise, improvements include more sophisticated pre-processing of the depth data or 
refining the KinectFusion routines. As hinted at earlier on, the internal pose estimation of KinectFusion may be one source 
of error which can be corrected simply by modifying the various C++ source files. Use of another highly accurate distance 
sensor to augment the rough, real-time Kinect algorithm is another alternate solution.  

Conclusion 
As presented in this paper, a system for autonomous indoor phenotyping was created. The system’s design, hardware, 

software layout, and a concept-level view of the software were presented. The system was tested in a one-chamber case, 
and the effectiveness of the navigation system was informally demonstrated. The main data-collection focus was on the 
more generally-applicable plant probing sub-system. The result from probing using the same algorithm on three related 
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but different data structures were compared. Before installing other sensors, some refinement of the probing sub-system 
should be done, improving location accuracy. Additionally, the accuracy of surface normal estimation should be tested. As 
the final end-goal for our future work, we aim to make the system fully autonomous. 
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Safety Emphasis 
In order to make the rover safe for interaction with humans, several features have been implemented. First, fuses were 

inserted which minimizes risk of short-circuiting of contacts and risk of drawing current that is higher than components’ 
specifications. The battery consists of four sets of four 3.2.V (nominal) lithium-ion batteries (total 51.2 nominal). One fuse 
is inserted in between the 2 middle cell-sets, and one fuse is connected directly to the battery’s 48V contact. Both fuses are 
currently 25A. Secondly, one emergency stop, which cuts power to the motors, is on each side of the rover base. Third, the 
wheels are designed to have a “moderate” level of traction, so the rover is physically limited in its accelerations and in its 
ability to push objects. This reduces likelihood that the rover would trap someone against a wall, whether the robot or the 
human was at fault. Fourth, the robot arm is suitable for “Collaborative operation according to ISO 10218-1:2011” 
(Universal Robots, 2015). If the robot exceeds a safety setting (force, torque, velocity, etc.) the UR10 can go into a slow or 
stopped mode according to the user-defined settings.  

Further internal electrical precautions were taken. High-current relays (arbitrarily chosen as 200A) implement the 
mergency-stop and main switch power control, allowing reliable operation. Some electrical precautions similar to those 
recommended in the motor controller manufacturer’s user manual (Roboteq) were implemented. These included a path 
from motor voltage terminal through a pull-down resistor to ground while the system is turned off (implemented using a 
five-pole single-throw industrial switch), and a path from the motor voltage terminal through a diode and a 10A fuse to the 
battery’s positive terminal to prevent over-voltage while the system is turned on. Finally, all significant wiring inside the 
controller has been sized appropriately, labelled, shielded with heat-shrinkable tubing and cable wrap, crimped with 
appropriately-rated wire crimps, and guided using cable ties and mounting pads. Bus bars were used to organize voltage 
contacts of the same voltage (24V, 48V, ground). This enhances maintenance and decreases the risk of electrical accidents. 
No unified standard was applied or monitored, however. 
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